Upper bounds for the sum of Laplacian eigenvalues of graphs
نویسندگان
چکیده
منابع مشابه
Bounds on normalized Laplacian eigenvalues of graphs
*Correspondence: [email protected] 1School of Mathematics and Statistics, Minnan Normal University, Zhangzhou, Fujian, P.R. China 2Center for Discrete Mathematics, Fuzhou University, Fuzhou, Fujian, P.R. China Full list of author information is available at the end of the article Abstract Let G be a simple connected graph of order n, where n≥ 2. Its normalized Laplacian eigenvalues are 0 = λ1 ...
متن کاملSome remarks on the sum of the inverse values of the normalized signless Laplacian eigenvalues of graphs
Let G=(V,E), $V={v_1,v_2,ldots,v_n}$, be a simple connected graph with $%n$ vertices, $m$ edges and a sequence of vertex degrees $d_1geqd_2geqcdotsgeq d_n>0$, $d_i=d(v_i)$. Let ${A}=(a_{ij})_{ntimes n}$ and ${%D}=mathrm{diag }(d_1,d_2,ldots , d_n)$ be the adjacency and the diagonaldegree matrix of $G$, respectively. Denote by ${mathcal{L}^+}(G)={D}^{-1/2}(D+A) {D}^{-1/2}$ the normalized signles...
متن کاملSharp upper bounds for the Laplacian graph eigenvalues
Let G = (V ,E) be a simple connected graph and λ1(G) be the largest Laplacian eigenvalue of G. In this paper, we prove that: 1. λ1(G) = max{du +mu : u ∈ V } if and only if G is a regular bipartite or a semiregular bipartite graph, where du and mu denote the degree of u and the average of the degrees of the vertices adjacent to u, respectively. 2. λ1(G) = 2 + √ (r − 2)(s − 2) if and only if G is...
متن کاملBounds for Laplacian Graph Eigenvalues
Let G be a connected simple graph whose Laplacian eigenvalues are 0 = μn (G) μn−1 (G) · · · μ1 (G) . In this paper, we establish some upper and lower bounds for the algebraic connectivity and the largest Laplacian eigenvalue of G . Mathematics subject classification (2010): 05C50, 15A18.
متن کاملOn Sum of Powers of the Laplacian and Signless Laplacian Eigenvalues of Graphs
Let G be a graph of order n with signless Laplacian eigenvalues q1, . . . , qn and Laplacian eigenvalues μ1, . . . , μn. It is proved that for any real number α with 0 < α 6 1 or 2 6 α < 3, the inequality qα 1 + · · · + qα n > μ1 + · · · + μn holds, and for any real number β with 1 < β < 2, the inequality q 1 + · · ·+ q n 6 μβ1 + · · ·+ μ β n holds. In both inequalities, the equality is attaine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2012
ISSN: 0024-3795
DOI: 10.1016/j.laa.2012.01.007